Using OpenAI Embedding API for Chroma Integration

OpenAI’s powerful embedding models can be seamlessly integrated with Chroma to enhance the capabilities of your vector database. By leveraging OpenAI’s embeddings, you can improve the accuracy and relevance of your similarity search results. In this comprehensive guide, we will explore how to integrate the OpenAI Embedding API with Chroma.

Prerequisites

  • OpenAI API Key: Obtain an OpenAI API key from the OpenAI platform.
  • Chroma: Ensure you have Chroma installed on your system.
  • Python: Install Python and the necessary libraries (e.g., openai, chromadb).

Creating a Chroma Collection

Import Necessary Libraries:

Python

import chromadb
import openai

Create a Chroma Client:

Python

client = chromadb.Client()

Create a Collection:

Python

collection = client.create_collection(
name=”my_collection”
)

Generating Embeddings with OpenAI

Set Your API Key:

Python

openai.api_key = “YOUR_API_KEY”

Generate Embeddings:

Python

text = “This is a sample text.”
embedding = openai.Embedding.create(
input=text,
engine=”text-davinci-003″
)

Integrating with Chroma

Add Embeddings to Chroma:

Python

collection.add(
documents=[“This is a sample document.”],
embeddings=[embedding[“data”][0]])

Querying the Collection

Create a Query:

Python

query_text = “What is the capital of France?”

Generate Query Embedding:

Python

query_embedding = openai.Embedding.create(
input=query_text,
engine=”text-davinci-003″
)

Perform Query:

Python

results = collection.query(
query_embeddings=[query_embedding[“data”][0]],
n_results=5
)

Accessing Results

Python

for result in results["matches"]:
    print(result["document"])
    print(result["score"])
Creating OpenAI Embeddings Without Chroma
Metrics and Data Structures in Vector Databases

Get industry recognized certification – Contact us

keyboard_arrow_up
Open chat
Need help?
Hello 👋
Can we help you?