Space-based solar power (SBSP) is the concept of collecting solar power in space (using an “SPS”, that is, a “solar-power satellite” or a “satellite power system”) for use on Earth. It has been in research since the early 1970s.
SBSP would differ from current solar collection methods in that the means used to collect energy would reside on an orbiting satellite instead of on Earth’s surface. Some projected benefits of such a system are a higher collection rate and a longer collection period due to the lack of a diffusing atmosphere and night time in space.
Part of the solar energy (55-60%) is lost on its way through the atmosphere by the effects of reflection and absorption. Space-based solar power systems convert sunlight to microwaves outside the atmosphere, avoiding these losses, and the downtime (and cosine losses, for fixed flat-plate collectors) due to the Earth’s rotation.
Besides the cost of implementing such a system, SBSP also introduces several new hurdles, primarily the problem of transmitting energy from orbit to Earth’s surface for use. Since wires extending from Earth’s surface to an orbiting satellite are neither practical nor feasible with current technology, SBSP designs generally include the use of some manner of wireless power transmission. The collecting satellite would convert solar energy into electrical energy on board, powering a microwave transmitter or laser emitter, and focus its beam toward a collector (rectenna) on Earth’s surface. Radiation and micrometeoroid damage could also become concerns for SBSP.