Global Warming

Global Warming is the increase of Earth’s average surface temperature due to effect of greenhouse gases, such as carbon dioxide emissions from burning fossil fuels or from deforestation, which trap heat that would otherwise escape from Earth. This is a type of greenhouse effect.

Scientific understanding of global warming is increasing. In its 2014 report the Intergovernmental Panel on Climate Change (IPCC) reported that scientists were more than 95% certain that most of global warming is caused by increasing concentrations of greenhouse gases and other human (anthropogenic) activities. Climate model projections summarized in the report indicated that during the 21st century the global surface temperature is likely to rise a further 0.3 to 1.7 °C (0.5 to 3.1 °F) for their lowest emissions scenario using stringent mitigation and 2.6 to 4.8 °C (4.7 to 8.6 °F) for their highest. These findings have been recognized by the national science academies of the major industrialized nations.

Future climate change and associated impacts will differ from region to region around the globe. Anticipated effects include warming global temperature, rising sea levels, changing precipitation, and expansion of deserts in the subtropics. Warming is expected to be greatest in the Arctic, with the continuing retreat of glaciers, permafrost and sea ice. Other likely changes include more frequent extreme weather events including heat waves, droughts, heavy rainfall, and heavy snowfall; ocean acidification; and species extinctions due to shifting temperature regimes. Effects significant to humans include the threat to food security from decreasing crop yields and the abandonment of populated areas due to flooding.

Causes – The climate system can respond to changes in external forcings. External forcings can “push” the climate in the direction of warming or cooling. Examples of external forcings include changes in atmospheric composition (e.g., increased concentrations of greenhouse gases), solar luminosity, volcanic eruptions, and variations in Earth’s orbit around the Sun. Orbital cycles vary slowly over tens of thousands of years, and at present are in a cooling trend. The variations in orbital cycles may produce a glacial period about 50,000 years from now.

  • Greenhouse gases – On Earth, naturally occurring amounts of greenhouse gases have a mean warming effect of about 33 °C (59 °F). Without the Earth’s atmosphere, the Earth’s average temperature would be well below the freezing temperature of water. The major greenhouse gases are water vapor, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%. Clouds also affect the radiation balance through cloud forcings similar to greenhouse gases. Human activity since the Industrial Revolution has increased the amount of greenhouse gases in the atmosphere, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. According to work published in 2007, the concentrations of CO2 and methane have increased by 36% and 148% respectively since 1750. These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores.
  • Particulates and soot – Global dimming, a gradual reduction in the amount of global direct irradiance at the Earth’s surface, was observed from 1961 until at least 1990. The main cause of this dimming is particulates produced by volcanoes and human made pollutants, which exerts a cooling effect by increasing the reflection of incoming sunlight. The effects of the products of fossil fuel combustion – CO2 and aerosols – have partially offset one another in recent decades, so that net warming has been due to the increase in non-CO2 greenhouse gases such as methane. Radiative forcing due to particulates is temporally limited due to wet deposition, which causes them to have an atmospheric lifetime of one week. Carbon dioxide has a lifetime of a century or more, and as such, changes in particulate concentrations will only delay climate changes due to carbon dioxide. Black carbon is second only to carbon dioxide for its contribution to global warming.
  • Solar Activity – Since 1978, solar irradiance has been measured by satellites. These measurements indicate that the Sun’s radiative output has not increased since 1978, so the warming during the past 30 years cannot be attributed to an increase in solar energy reaching the Earth. Climate models have been used to examine the role of the Sun in recent climate change. Models are unable to reproduce the rapid warming observed in recent decades when they only take into account variations in solar output and volcanic activity. Models are, however, able to simulate the observed 20th century changes in temperature when they include all of the most important external forcings, including human influences and natural forcings.

Observed Impacts In India

Environmental: Increased landslides and flooding are projected to have an impact upon states such as Assam. Ecological disasters, such as a 1998 coral bleaching event that killed off more than 70% of corals in the reef ecosystems off Lakshadweep and the Andamans, and was brought on by elevated ocean temperatures tied to global warming, are also projected to become increasingly common.

The first among the countries to be affected by severe climate change is Bangladesh. Its sea level, temperature and evaporation are increasing, and the changes in precipitation and cross boundary river flows are already beginning to cause drainage congestion. There is a reduction in fresh water availability, disturbance of morphologic processes and a higher intensity of flooding and other such disasters. Bangladesh only contributes 0.1% of the world’s emissions yet it has 2.4% of the world’s population. In contrast, the United States makes up about 5 percent of the world’s population, yet they produce approximately 25 percent of the pollution that causes global warming.

Economic: The Indira Gandhi Institute of Development Research has reported that, if the predictions relating to global warming made by the Intergovernmental Panel on Climate Change come to fruition, climate-related factors could cause India’s GDP to decline by up to 9%; contributing to this would be shifting growing seasons for major crops such as rice, production of which could fall by 40%. Around seven million people are projected to be displaced due to, among other factors, submersion of parts of Mumbai and Chennai, if global temperatures were to rise by a mere 2 °C (3.6 °F).

Villagers in India’s North Eastern state of Meghalaya are also concerned that rising sea levels will submerge neighbouring low-lying Bangladesh, resulting in an influx of refugees into Meghalaya which has few resources to handle such a situation.

If severe climate changes occur, Bangladesh will lose land along the coast line. This will be highly damaging to Bangladeshis especially because nearly two-thirds of Bangladeshis are employed in the agriculture sector, with rice as the single most important product. The economy has grown 5-6% over the past few years despite inefficient state-owned enterprises, delays in exploiting natural gas resources insufficient power supplies, and slow implementation of economic reforms. However, Bangladesh remains a poor, overpopulated, and inefficiently governed nation. If no further steps are taken to improve the current conditions global warming will affect the economy severely worsening the present issues further. The climate change would increase expenditure towards health care, cool drinks, alcoholic beverages, air conditioners, ice cream, cosmetics, agro chemicals etc.

Social: Climate Change in India will have a disproportionate impact on the more than 400 million that make up India’s poor This is because so many depend on natural resources for their food, shelter and income. More than 56% of people in India work in agriculture, while many others earn their living in coastal areas.

Thick haze and smoke, originating from burning biomass in northeastern India and air pollution from large industrial cities in northern India, often concentrate inside the Ganges Basin. Prevailing westerlies carry aerosols along the southern margins of the steep-faced Tibetan Plateau to eastern India and the Bay of Bengal. Dust and black carbon, which are blown towards higher altitudes by winds at the southern faces of the Himalayas, can absorb shortwave radiation and heat the air over the Tibetan Plateau. The net atmospheric heating due to aerosol absorption causes the air to warm and convect upwards, increasing the concentration of moisture in the mid-troposphere and providing positive feedback that stimulates further heating of aerosols.

Climate Change
Sustainable Development

Get industry recognized certification – Contact us

keyboard_arrow_up
Open chat
Need help?
Hello 👋
Can we help you?