Building wiring is the electrical wiring and associated devices such as switches, meters and light fittings used in buildings or other structures. Electrical wiring uses insulated conductors.
Wiring safety codes vary by country, and the International Electro-technical Commission (IEC) is attempting to standardize wiring amongst member countries. Wires and cables are rated by the circuit voltage, temperature, and environmental conditions (moisture, sunlight, oil, chemicals) in which they can be used. Color codes are used to distinguish line , neutral and ground (earth) wires.
Wiring methods
Materials for wiring interior electrical systems in buildings vary depending on
- Intended use and amount of power demand on the circuit
- Type of occupancy and size of the building
- National and local regulations
- Environment in which the wiring must operate.
Wiring systems in a single family home or duplex, for example, are simple, with relatively low power requirements, infrequent changes to the building structure and layout, usually with dry, moderate temperature, and non-corrosive environmental conditions. In a light commercial environment, more frequent wiring changes can be expected, large apparatus may be installed, and special conditions of heat or moisture may apply. Heavy industries have more demanding wiring requirements, such as very large currents and higher voltages, frequent changes of equipment layout, corrosive, or wet or explosive atmospheres. In facilities that handle flammable gases or liquids, special rules may govern the installation and wiring of electrical equipment in hazardous areas.
Wires and cables are rated by the circuit voltage, temperature rating, and environmental conditions (moisture, sunlight, oil, chemicals) in which they can be used. A wire or cable has a voltage (to neutral) rating, and a maximum conductor surface temperature rating. The amount of current a cable or wire can safely carry depends on the installation conditions.
Early wiring methods
The first interior power wiring systems used conductors that were bare or covered with cloth, which were secured by staples to the framing of the building or on running boards. Where conductors went through walls, they were protected with cloth tape. Splices were done similarly to telegraph connections, and soldered for security. Underground conductors were insulated with wrappings of cloth tape soaked in pitch, and laid in wooden troughs which were then buried. Such wiring systems were unsatisfactory because of the danger of electrocution and fire, plus the high labour cost for such installations.
Knob and tube
The earliest standardized method of wiring in buildings, in common use in North America from about 1880 to the 1930s, was knob and tube (K&T) wiring: single conductors were run through cavities between the structural members in walls and ceilings, with ceramic tubes forming protective channels through joists and ceramic knobs attached to the structural members to provide air between the wire and the lumber and to support the wires. Since air was free to circulate over the wires, smaller conductors could be used than required in cables. By arranging wires on opposite sides of building structural members, some protection was afforded against short-circuits that can be caused by driving a nail into both conductors simultaneously.
By the 1940s, the labour cost of installing two conductors rather than one cable resulted in a decline in new knob-and-tube installations. However, the US code still allows new K&T wiring installations in special situations (some rural and industrial applications).
Metal-sheathed wires
In the United Kingdom, an early form of insulated cable, introduced in 1896, consisted of two impregnated-paper-insulated conductors in an overall lead sheath. Joints were soldered, and special fittings were used for lamp holders and switches. These cables were similar to underground telegraph and telephone cables of the time. Paper-insulated cables proved unsuitable for interior wiring installations because very careful workmanship was required on the lead sheaths to ensure moisture did not affect the insulation.
A system later invented in the UK in 1908 employed vulcanized-rubber insulated wire enclosed in a strip metal sheath. The metal sheath was bonded to each metal wiring device to ensure earthing continuity.
A system developed in Germany called “Kuhlo wire” used one, two, or three rubber-insulated wires in a brass or lead-coated iron sheet tube, with a crimped seam. The enclosure could also be used as a return conductor. Kuhlo wire could be run exposed on surfaces and painted, or embedded in plaster. Special outlet and junction boxes were made for lamps and switches, made either of porcelain or sheet steel. The crimped seam was not considered as watertight as the Stannos wire used in England, which had a soldered sheath.
A somewhat similar system called “concentric wiring” was introduced in the United States around 1905. In this system, an insulated electrical wire was wrapped with copper tape which was then soldered, forming the grounded (return) conductor of the wiring system. The bare metal sheath, at earth potential, was considered safe to touch. While companies such as General Electric manufactured fittings for the system, and a few buildings were wired with it, it was never adopted into the US National Electrical Code. Drawbacks of the system were that special fittings were required, and that any defect in the connection of the sheath would result in the sheath becoming energized.
Other historical wiring methods
Other methods of securing wiring that are now obsolete include
- Re-use of existing gas pipes when converting gas light installations to electric lighting. Insulated conductors were pulled through the pipes that had formerly supplied the gas lamps. Although used occasionally, this method risked insulation damage from sharp edges inside the pipe at each joint.
- Wood mouldings with grooves cut for single conductor wires, covered by a wooden cap strip. These were prohibited in North American electrical codes by 1928. Wooden moulding was also used to some degree in England, but was never permitted by German and Austrian rules. A system of flexible twin cords supported by glass or porcelain buttons was used near the turn of the 20th century in Europe, but was soon replaced by other methods.
- During the first years of the 20th century, various patented forms of wiring system such as Bergman and Peschel tubing were used to protect wiring; these used very thin fiber tubes, or metal tubes which were also used as return conductors.
- In Austria, wires were concealed by embedding a rubber tube in a groove in the wall, plastering over it, then removing the tube and pulling wires through the cavity.
Metal moulding systems, with a flattened oval section consisting of a base strip and a snap-on cap channel, were more costly than open wiring or wooden moulding, but could be easily run on wall surfaces. Similar surface mounted raceway wiring systems are still available today.
Armoured cables with two rubber-insulated conductors in a flexible metal sheath were used as early as 1906, and were considered at the time a better method than open knob-and-tube wiring, although much more expensive. The first polymer-insulated cables for building wiring were introduced in 1922. These were two or more solid copper electrical wires with rubber insulation, plus woven cotton cloth over each conductor for protection of the insulation, with an overall woven jacket, usually impregnated with tar as a protection from moisture. Waxed paper was used as a filler and separator.
Over time, rubber-insulated cables become brittle because of exposure to atmospheric oxygen, so they must be handled with care, and are usually replaced during renovations. When switches, outlets or light fixtures are replaced, the mere act of tightening connections may cause hardened insulation to flake off the conductors. Rubber insulation further inside the cable often is in better condition than the insulation exposed at connections, due to reduced exposure to oxygen.
Rubber insulation was hard to strip from bare copper, so copper was tinned, causing slightly more electrical resistance. Rubber insulation is no longer used for permanent wiring installations, but may still be used for replaceable temporary cables where flexibility is important, such as electrical extension cords.
About 1950, PVC insulation and jackets were introduced, especially for residential wiring. About the same time, single conductors with a thinner PVC insulation and a thin nylon jacket (e.g. US Type THN, THHN, etc.) became common.
Armoured cables with two rubber-insulated conductors in a flexible metal sheath were used as early as 1906, and were considered at the time a better method than open knob-and-tube wiring, although much more expensive.
The first polymer-insulated cables for building wiring were introduced in 1922. These were two or more solid copper electrical wires with rubber insulation, plus woven cotton cloth over each conductor for protection of the insulation, with an overall woven jacket, usually impregnated with tar as a protection from moisture. Waxed paper was used as a filler and separator.
Over time, rubber-insulated cables become brittle because of exposure to atmospheric oxygen, so they must be handled with care, and are usually replaced during renovations. When switches, outlets or light fixtures are replaced, the mere act of tightening connections may cause hardened insulation to flake off the conductors. Rubber insulation further inside the cable often is in better condition than the insulation exposed at connections, due to reduced exposure to oxygen.
Rubber insulation was hard to strip from bare copper, so copper was tinned, causing slightly more electrical resistance. Rubber insulation is no longer used for permanent wiring installations, but may still be used for replaceable temporary cables where flexibility is important, such as electrical extension cords.
About 1950, PVC insulation and jackets were introduced, especially for residential wiring. About the same time, single conductors with a thinner PVC insulation and a thin nylon jacket (e.g. US Type THN, THHN, etc.) became common.
Modern wiring materials
Modern non-metallic sheathed cables, such as (US and Canadian) Types NMB and NMC, consist of two to four wires covered with thermoplastic insulation, plus a bare wire for grounding (bonding), surrounded by a flexible plastic jacket. Some versions wrap the individual conductors in paper before the plastic jacket is applied.
Special versions of non-metallic sheathed cables, such as US Type UF, are designed for direct underground burial (often with separate mechanical protection) or exterior use where exposure to ultraviolet radiation (UV) is a possibility. These cables differ in having a moisture-resistant construction, lacking paper or other absorbent fillers, and being formulated for UV resistance. Rubber-like synthetic polymer insulation is used in industrial cables and power cables installed underground because of its superior moisture resistance.
Insulated cables are rated by their allowable operating voltage and their maximum operating temperature at the conductor surface. A cable may carry multiple usage ratings for applications, for example, one rating for dry installations and another when exposed to moisture or oil.
Generally, single conductor building wire in small sizes is solid wire, since the wiring is not required to be very flexible. Building wire conductors larger than 10 AWG (or about 6 mm²) are stranded for flexibility during installation, but are not sufficiently pliable to use as appliance cord.
Cables for industrial, commercial, and apartment buildings may contain many insulated conductors in an overall jacket, with helical tape steel or aluminium armour, or steel wire armour, and perhaps as well an overall PVC or lead jacket for protection from moisture and physical damage. Cables intended for very flexible service or in marine applications may be protected by woven bronze wires. Power or communications cables (e.g., computer networking) that are routed in or through air-handling spaces (plenums) of office buildings are required under the model building code to be either encased in metal conduit, or rated for low flame and smoke production. For some industrial uses in steel mills and similar hot environments, no organic material gives satisfactory service. Cables insulated with compressed mica flakes are sometimes used. Another form of high-temperature cable is a mineral insulated cable, with individual conductors placed within a copper tube, and the space filled with magnesium oxide powder. The whole assembly is drawn down to smaller sizes, thereby compressing the powder. Such cables have a certified fire resistance rating, and are more costly than non-fire rated cable. They have little flexibility and behave more like rigid conduit rather than flexible cables.
Because multiple conductors bundled in a cable cannot dissipate heat as easily as single insulated conductors, those circuits are always rated at a lower “ampacity”. Tables in electrical safety codes give the maximum allowable current for a particular size of conductor, for the voltage and temperature rating at the surface of the conductor for a given physical environment, including the insulation type and thickness. The allowable current will be different for wet or dry, for hot (attic) or cool (underground) locations. In a run of cable through several areas, the most severe area will determine the appropriate rating of the overall run.
Cables usually are secured by special fittings where they enter electrical apparatus; this may be a simple screw clamp for jacketed cables in a dry location, or a polymer-gasketed cable connector that mechanically engages the armour of an armoured cable and provides a water-resistant connection. Special cable fittings may be applied to prevent explosive gases from flowing in the interior of jacketed cables, where the cable passes through areas where inflammable gases are present. To prevent loosening of the connections of individual conductors of a cable, cables must be supported near their entrance to devices and at regular intervals through their length. In tall buildings, special designs are required to support the conductors of vertical runs of cable. Usually, only one cable per fitting is allowed unless the fitting is otherwise rated.
Special cable constructions and termination techniques are required for cables installed in ocean-going vessels; in addition to electrical safety and fire safety, such cables may also be required to be pressure-resistant where they penetrate bulkheads of a ship. Resistance to corrosion caused by salt water or salt spray is also required.