LangChain provides powerful tools for building applications that combine vector databases with large language models (LLMs). By using the RetrievalQAChain
class, you can effectively retrieve relevant information from a vector database and generate responses using an LLM.
Prerequisites
- LangChain: Ensure you have LangChain installed on your system.
- Vector Database: Set up a vector database, such as Pinecone or FAISS.
- LLM: Choose an LLM, such as OpenAI’s GPT-3 or GPT-4.
Creating a Retriever
Import Necessary Libraries:
Python
from langchain.vectorstores import Pinecone
from langchain.llms import OpenAI
from langchain.chains import RetrievalQAChain
Initialize Pinecone:
Python
pinecone.init(api_key=”YOUR_API_KEY”, environment=”us-west1-gcp”)
Create a Pinecone Index:
Python
index_name = “my_index”
embedding_dimension = 512 # Adjust based on your embeddings
metric = “cosine” # Choose a suitable metric
collection = Pinecone(
index_name=index_name,
embedding_dimension=embedding_dimension,
metric=metric
)
Create a Retriever:
Python
retriever = collection.as_retriever()
Creating an LLMChain
Create an LLM:
Python
llm = OpenAI(temperature=0.7)
Create a Chain:
Python
chain = RetrievalQAChain(
llm=llm,
retriever=retriever
)
Using the Chain
Query the Chain:
Python
query = “What is the capital of France?”
response = chain.run(query)
print(response)
By using LangChain’s RetrievalQAChain
, you can effectively combine a vector database with an LLM to create powerful question-answering applications. The chain automatically retrieves relevant documents from the vector database and passes them to the LLM for processing, providing a seamless integration between these two components.