In FastAPI applications, it’s often necessary to load and access configuration settings frequently. To improve performance, you can implement caching mechanisms to avoid redundant configuration loading. This section will explore techniques for caching configuration objects and retrieving them efficiently.
Caching Configuration Objects
Create a Caching Function:
Python
import cachetools
@cachetools.cached(maxsize=128)
def get_settings():
# Load configuration from environment variables or a file
settings = Settings()
return settings
This function uses cachetools
to cache the Settings
object. The maxsize
parameter specifies the maximum number of cached items.
Use the Caching Function in Dependencies:
Python
from fastapi import Depends
def get_settings(settings: Settings = Depends(get_settings)):
return settings
Retrieving Config Objects
To retrieve the cached configuration object, simply call the get_settings
function:
Python
@app.get("/")
def read_root(settings: Settings = Depends(get_settings)):
return {"debug": settings.debug, "database_url": settings.database_url}
Additional Considerations
- Cache Invalidation: If your configuration values change during runtime, you might need to invalidate the cache to ensure that the application uses the latest values. You can use cachetools’
ttl
parameter to set a time-to-live for cached items, or manually invalidate the cache when necessary. - Cache Storage: For more complex caching scenarios, consider using specialized caching libraries like Redis or Memcached. These libraries offer features like distributed caching and persistence.
- Performance Considerations: While caching can improve performance, be mindful of the trade-offs. Caching can introduce complexity and potential issues if not managed properly.
Example with Redis:
Python
import redis
from fastapi import Depends
from cachetools import cached, LRUCache
redis_client = redis.Redis(host="localhost", port=6379)
@cached(cache=LRUCache(maxsize=128), key=lambda: "settings")
def get_settings():
# Load configuration from environment variables or a file
settings = Settings()
redis_client.set("settings", settings.json())
return settings